How to Improve CV and Limb Outcomes in the patients with PAD

Tailored Protection for your cardiovascular patients : Insights from COMPASS Trial

Jong-Young Lee, MD, PhD.

Division of Cardiology, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea

Overview of PAD

Current Treatment of PAD

COMPASS Study

Focusing on PAD Subgroup Data

Overview of PAD

A progressive and polyvascular disease caused by atherosclerosis

Overview of PAD

- PAD is an atherosclerotic process that causes stenosis and occlusion of non-cerebral and non-coronary arteries^{1–3}
- PAD typically refers to atherosclerosis affecting the arteries of the lower extremities – the resulting limb ischaemia can lead to amputation^{1–3}
- PAD may also affect visceral arteries and carotid arteries¹

♦ PAD is often asymptomatic^{1–3}

1. Tendera M et al – ESC PAD Guidelines, Eur Heart J 2011;32:2851–2906;

Toe gangrene

- 2. Gerhard-Herman MD et al AHA/ACC lower extremity PAD Guidelines, J Am Coll Cardiol 2016;69:e71–e126 ;
- 3. Norgren L et al Inter-Society Consensus for the Management of PAD (TASC II), J Vasc Surg 2007;45:S5-S67

Lower Extremity Peripheral Artery Occlusion Leads to Limb Ischaemia

PAD

- Atherosclerotic plaques lead to occlusion of peripheral arteries with consecutive hypoperfusion and ischaemia of tissues distal to the obstruction¹
- The most severe manifestations are:
 - Acute limb ischaemia sudden (<2 weeks) decrease in limb perfusion^{1,2}
 - Critical limb ischaemia chronic (≥2 weeks) hypoperfusion that is inadequate to sustain viability in the distal tissue bed; typically associated with multisegment occlusive arterial disease¹⁻³

Norgren L *et al* – Inter-Society Consensus for the Management of PAD (TASC II), *J Vasc Surg* 2007;45:S5–S67;
Gerhard-Herman MD *et al* – AHA/ACC lower extremity PAD Guidelines, *J Am Coll Cardiol* 2016;69:e71–e126;
Hirsch AT *et al*, *Circulation* 2006;113:e463–e654

Diagnosis of Lower Extremity PAD

PAD can be diagnosed by measurement of resting ankle-brachial index (ABI)¹

- Resting ABI is the standard diagnostic test for lower extremity PAD²
- ABI can also be used for prognosis and monitoring interventions²
- Additional tests include pulse-volume recording, segmental pressures, duplex ultrasound and exercise test with ABI²

Atherosclerosis Is a Progressive Disease Leading to Atherothrombosis and Ischaemia

CAD

PAD affects millions of patients worldwide

^{1.} Fowkes FGR et al, Lancet 2013;382:1329–1340; 2. McDermott MM et al, J Am Heart Assoc 2013;2:e000257

1. Sigvant B et al, Eur J Vasc Endovasc Surg 2016;51:395-403; 2. Norgren L et al, J Vasc Surg 2007;45:S5-S67

PAD Is a Typical Polyvascular Disease

REACH: More than 3 in 5 patients with PAD have atherothrombotic disease also in other arterial territories

Percentages are calculated from the total population included in the REACH registry. N=67,888

Real-world evidence shows that patients with PAD are at high risk of adverse cardiovascular events

1-year outcomes in patients with CAD alone, PAD alone or CAD+PAD (REACH registry)

Steg PG et al, JAMA 2007;297:1197-1206

Current Management of PAD

Current recommendations and unmet needs

Current Vascular Protection Strategies Aim to Reduce Risk of Atherothrombotic CV and Limb Events in Patients with PAD

Vascular protection^{1–4}

Control of cardiovascular risk factors to limit atherosclerosis progression and stabilize existing plaques

Lifestyle changes

- Smoking cessation
- Regular exercise
- Healthy diet
- Weight management
- Psychosocial support

Medical therapies

- Lipid control statins
- Hypertension control ACE inhibitors/ARBs
- Diabetes control insulin/anti-glycaemic drugs

Prevention of blood clot formation over any ruptured/eroded atherosclerotic plaques

Antithrombotic therapy

 Single antiplatelet therapy with aspirin or clopidogrel

 Aboyans V et al, Eur Heart J 2017; doi: 10.1093/eurheartj/ehx095; 2. Aboyans V et al, Eur J Vasc Endovasc Surg 2017: doi:10.1016/j.ejvs.2017.07.018; 3. Gerhard-Herman MD et al, J Am Coll Card 2016: doi:10.1016/j.jacc.2016.11.007;
Cortés-Beringola A et al, Eur J Prevent Cardiol 2017;24:22–28

Current Guideline of Cardiovascular prevention in PAD

Aboyans V et al, Eur Heart J 2018;39:763-816

The Current ESC Guidelines for PAD Management Recommend Treatment of Symptomatic PAD

2017 ESC guideline recommendations for antithrombotic therapies in patients with PAD

- SAPT is recommended for all patients with symptomatic PAD
- DAPT is recommended only for a limited period of time after certain revascularization procedures

Patients with	Recommendation	Class
Symptomatic PAD	Antiplatelet therapy is recommended	lc
Patients with Recommendation Symptomatic PAD Antiplatelet therapy is recommended Lower extremity PAD In patients requiring antiplatelet therapy, clopidogrel may be preferred over aspirin Anticoagulation with VKAs may be considered after autogenous vein infrainguinal bypass Anticoagulation with VKAs may be considered after autogenous vein infrainguinal bypass DAPT (aspirin plus clopidogrel) for ≥1 month should be considered after infra-inguinal stent implantation DAPT (aspirin plus clopidogrel) may be considered in the case of below-knee bypass with a prosthetic graft Long-term SAPT is recommended in all patients who have undergone revascularization SAPT is recommended after infrainguinal bypass surgery	In patients requiring antiplatelet therapy, clopidogrel may be preferred over aspirin	llb
	llb	
	DAPT (aspirin plus clopidogrel) for ≥1 month should be considered after infra-inguinal stent implantation	lla
	llb	
	Long-term SAPT is recommended in all patients who have undergone revascularization	lc
	SAPT is recommended after infrainguinal bypass surgery	la

Evidence Supporting the Use of Aspirin or Clopidogrel to Prevent CV Events in Patients with PAD is Limited

Aspirin¹

- Meta-analysis: aspirin vs control
- Only non-significant reduction in MACE with aspirin
 - However, aspirin significantly reduced non-fatal stroke rate

Clopidogrel²

- CAPRIE trial: clopidogrel vs aspirin
- Only this subgroup analysis supports the use of clopidogrel over aspirin

Outcome	HR (95% CI)	<i>p</i> -value	Subgroup	RRR (95% CI)	<i>p</i> -value
CV death	0.94 (0.74–1.19)	0.59	Prior MI	-3.7% (-22.1–12.0)	0.66
Non-fatal MI	1.04 (0.78–1.39)	0.81	Prior stroke	7.3 (-5.7–18.7)	0.26
Non-fatal stroke	0.66 (0.47–0.94)	0.02	PAD	23.8% (8.9–36.2)	0.0028
Composite	0.88 (0.76–1.04)	0.13	All patients	8.7% (0.3–16.5)	0.043

- Another meta-analysis by the ATTC showed a reduction in MACE with antiplatelet treatment³
- REACH: no reduction in 4-year CV events with antiplatelet agents (60% aspirin)⁴

1. Berger JS *et al, JAMA* 2009;301:1909–1919; 2. CAPRIE Steering Committee, *Lancet* 1996;348:1329–1339; 3. Antithrombotic Trialists' Collaboration, *Br Med J* 2002;324:71-86; 4. Abtan J *et al, Clin Card* 2017: doi:10.1002/clc.22721

Incidence of CV events among real-world patients with CAD or PAD receiving ASA

Results

- A total of 1,285 patients met all selection criteria; 89% had CAD; 22%, PAD; and 12%, both.
- During follow-up (mean 2.3 years), 16% experienced CV events (MACE or MALE), which was more than twice that of the COMPASS "ASA only" arm (6%; mean F/U 1.9 years).
- Results were consistent for both CAD (14% vs. 6%) and/or PAD (28% vs. 9%)

CV Event		CAD		PAD			Aggregate Cohort		
	"Real-Wor	ld" study	COMPASS	"Real-Worl	d" study	COMPASS	"Real-Worl	d" study	COMPASS
	All Patients (N=85,754)	ASA Only (N=1,143)	ASA Only (N=8,261)	All Patients (N=25,695)	ASA Only (N=278)	ASA Only (N=2,504)	All Patients (N=99,730)	ASA Only (N=1,285)	ASA Only (N=9,126)
MACE									
MI	3,818 (4.5)	58 (5.1)	195 (2.4)	1,150 (4.5)	13 (4.7)	67 (2.7)	4,270 (4.3)	67 (5.2)	205 (2.2)
Stroke	3,538 (4.1)	50 (4.4)	130 (1.6)	1,428 (5.6)	14 (5.0)	47 (1.9)	4,262 (4.3)	56 (4.4)	142 (1.6)
CV-death	2,398 (2.8)	57 (5.0)	184 (2.2)	891 (3.5)	18 (6.5)	78 (3.1)	2,722 (2.7)	63 (4.9)	203 (2.2)
Any of above	8,318 (9.7)	134 (11.7)	460 (5.6)	2,900 (11.3)	39 (14.0)	173 (6.9)	9,578 (9.6)	151 (11.8)	496 (5.4)
Male									
CLI	1,832 (2.1)	21 (1.8)	NP	2,880 (11.2)	36 (12.9)	24 (1.0)	3,459 (3.5)	44 (3.4)	NP
Amputation**	353 (0.4)	3 (0.3)	NP	434 (1.7)	7 (2.5)	28 (1.1)	574 (0.6)	7 (0.5)	NP
Revascularization	1,951 (2.3)	26 (2.3)	NP	1,664 (6.5)	20 (7.2)	NP	2,782 (2.8)	40 (3.1)	NP
Any of above	3,323 (3.9)	41 (3.6)	NP	3,788 (14.7)	48 (17.3)	60 (2.4)	5,385 (5.4)	72 (5.6)	NP
Any CV event	10,609 (12.4)	163 (<mark>14.3)</mark>	470 (5.7)	5,887 (22.9)	77 (27.7)	222 (8.9)	13,585 (13.6)	205 (16.0)	516 <mark>(5.7)</mark>

Berger J. et al., ACC.19. Poster Contributions. JACC March 12, 2019. Volume 73, Issue 9

Current recommendation for clopidogrel in PAD is based on twenty-year-old subanalysis data

<u>CAPRIE subanalysis</u>: lower risk of CV events with clopidogrel versus aspirin in patients with symptomatic PAD

	Clopidogrel (%/year)	Aspirin (%/year)	Risk reduction (95% CI)	p-value
Recent stroke (n=6431)	7.15	7.71		0.26
Recent MI (n=6302)	5.03	4.84		0.66
PAD (n=6452)	3.71	4.86		0.0028
All patients (N=19,185)	5.32	5.83		0.043
			-40 -30 -20 -10 0 10 20 30 40	

No reduction in limb events

Favours aspirin Favours clopidogrel

CAPRIE Steering Committee, Lancet 1996;348:1329-1339

Trials Investigating Intensified Antiplatelet Therapy in Patients with PAD Show Mixed Results

PAD

*Hospitalization for ALI or lower limb revascularization (individual endpoints); #Composite of ALI or peripheral revascularization; ‡No mortality benefit in the overall trial population⁵

1. Bhatt DL *et al*, *J Am Coll Cardiol* 2007;49:1982–1988; 2. Bonaca MP *et al*, *Circulation* 2013;127:1522–1529; 3. Hiatt WR *et al*, *N Engl J Med* 2017;376:32–40; 4. Bonaca MP *et al*, *J Am Coll Cardiol* 2016;67:2719–2728; 5. Bonaca MP *et al*, *N Engl J Med* 2015;372:1791–1800

COMPASS PAD Analysis

A Dual Pathway Approach Targeting Chronic Patients with CAD or PAD was Investigated in COMPASS

Objective: To determine the efficacy and safety of rivaroxaban, vascular dose of rivaroxaban plus aspirin or aspirin alone for reducing the risk of MI, stroke and cardiovascular death in CAD or PAD

Antithrombotic investigations* were stopped 1 year ahead of expectations in Feb 2017 due to overwhelming efficacy in the rivaroxaban vascular dose 2.5 mg bid + aspirin arm

*Patients who were not receiving a proton pump inhibitor (PPI) were randomized to pantoprazole or placebo (partial factorial design); the PPI pantoprazole component of the study is continuing; data will be communicated once complete

1. Eikelboom JW et al, N Engl J Med 2017;377:1319–1330; 2. Bosch J et al, Can J Cardiol 2017;33:1027–1035

CAD

Inclusion and Exclusion Criteria Ensure That Patients with Chronic PAD are Enrolled

Key inclusion criteria

- Previous peripheral artery revascularization
- Previous limb or foot amputation for arterial vascular disease
- Intermittent claudication plus:
 - Low ABI (<0.90), or
 - Significant peripheral artery stenosis (≥50%)
- Previous carotid revascularization, or asymptomatic carotid artery stenosis ≥50%
- CAD + Iow ABI (<0.90)</p>

Key exclusion criteria

- High risk of bleeding
- Stroke within 1 month
- History of haemorrhagic/lacunar stroke
- Severe heart failure (ejection fraction <30%)
- eGFR <15 ml/min</p>
- A need for dual antiplatelet therapy
- A need for non-aspirin antiplatelet therapy
- An indication for anticoagulation therapy

PAD-Specific Limb Outcomes Were Added to Main Study Outcomes for COMPASS

- Primary cardiovascular outcome was MACE, defined as:
 - Composite of cardiovascular death, stroke or MI
- Key composite outcomes for PAD:
 - Primary limb outcome was major adverse limb events (MALE), defined as development of ALI or CLI and major amputations not included in ALI or CLI
 - The composite of MACE and MALE
 - The composite of MACE, MALE and major amputations not included in ALI or CLI

Major Adverse Limb Events and Major Amputation Were Included in PAD-Specific Net Clinical Benefit

- Primary safety outcome: modified ISTH
 - Major bleeding defined as:
 - Fatal bleeding, or
 - Bleeding into a critical organ, or
 - Surgical site bleeding requiring reoperation, or
 - Bleeding requiring hospitalization
- Net clinical benefit outcome defined as:
 - MACE
 - MALE including major amputation
 - Fatal bleeding
 - Bleeding into a critical organ

COMPASS Included over 7000 Patients with Symptomatic PAD or Concomitant CAD and PAD

	Number of patients
All patients with PAD	7470
Symptomatic lower-extremity PAD	4129
Carotid disease	1919
CAD + asymptomatic PAD (ABI < 0.90)	1422

PAD was defined according to patient presentation at enrolment

- In addition, a patient could be defined as a PAD patient based on medical history and/or measurement of ABI at baseline visit
 - The latter category added patients with CAD and asymptomatic PAD patients into the overall PAD subgroup
- Median follow-up: 21 months

PAD

CAD

Baseline Characteristics Were Consistent across Treatment Arms and in Line with Those Usually Seen in Patients with PAD

Characteristic	Rivaroxaban 2.5 mg bid + aspirin N=2492	Rivaroxaban 5 mg bid N=2474	Aspirin N=2504
Age, years, mean ± SD	67.9±8.5	67.8±8.5	67.8±8.5
Current smoker, n (%)	682 (27.4)	685 (27.7)	685 (27.4)
Former smoker, n (%)	1147 (46.0)	1154 (46.6)	1143 (45.6)
Diabetes, n (%)	1100 (44.1)	1083 (43.8)	1104 (44.1)
Hypertension, n (%)	1966 (78.9)	1939 (78.4)	2017 (80.6)
Prior CAD, n (%)	1656 (66.5)	1609 (65.0)	1641 (65.5)
Prior stroke, n (%)	171 (6.9)	177 (7.2)	154 (6.2)
Lipid lowering, n (%)	2088 (83.8)	2074 (83.8)	2074 (82.8)
ACE inhibitor/ARB, n (%)	1715 (68.8)	1757 (71.0)	1765 (70.5)

PAD

Anand SS et al, Lancet 2017: doi:10.1016/S0140-6736(17)32757-5

Dual Pathway Inhibition with <u>Rivaroxaban Vascular Dose 2.5 mg</u> <u>bid + Aspirin</u> Reduced MACE by 28% Versus Aspirin Alone

Outcome	Rivaroxaban 2.5 mg bid + aspirin N=2492	Rivaroxaban 5 mg bid N=2474	Aspirin N=2504	Rivaroxaban 2.5 mg bid + aspirin vs aspirin		Rivaroxa 5 mg b vs aspi	ban id rin
	N (%)	N (%)	N (%)	HR (95% CI)	<i>p</i> - value	HR (95% CI)	<i>p</i> - value
MACE	126 (5)	149 (6)	174 (7)	0.72 (0.57–0.90)	0.0047	0.86 (0.69–1.08)	0.19
CV death	64 (3)	66 (3)	78 (3)	0.82 (0.59–1.14)	-	0.86 (0.62–1.19)	_
Stroke	25 (1)	43 (2)	47 (2)	0.54 (0.33–0.87)	-	0.93 (0.61–1.40)	-
MI	51 (2)	56 (2)	67 (3)	0.76 (0.53–1.09)	—	0.84 (0.59–1.20)	_

Rivaroxaban Vascular Dose 2.5 mg bid + Aspirin Significantly Reduced **Major Amputation by 70%** Versus Aspirin Alone

Outcome	Rivaroxaban 2.5 mg bid + aspirin N=2492	Rivaroxaban 5 mg bid N=2474 Aspirin N=2504 N=2504 Rivaroxaban 2.5 mg bid + aspirin vs aspirin		Rivaroxaban 2.5 mg bid + aspirin vs aspirin		Rivaroxa 5 mg b vs aspi	ban id rin
	N (%)	N (%)	N (%)	HR (95% CI)	<i>p</i> - value	HR (95% CI)	<i>p</i> - value
MALE	30 (1)	35 (1)	56 (2)	0.54 (0.35–0.84)	0.0054	0.63 (0.41–0.96)	0.032
Major amputation	5 (<1)	8 (<1)	17 (<1)	0.30 (0.11–0.80)	0.011	0.46 (0.20–1.08)	0.068
MALE plus major amputation*	32 (1)	40 (2)	60 (2)	0.54 (0.35–0.82)	0.0037	0.67 (0.45–1.00)	0.046

*An additional 11 major amputations of a vascular cause were done that were unlinked to acute or chronic limb ischaemia, two in the low-dose rivaroxaban plus aspirin group, five in the rivaroxaban alone group, and four in the aspirin alone group

Anand SS et al, Lancet 2017: doi:10.1016/S0140-6736(17)32757-5

Prognosis of MALE in PAD Patients: Results from the COMPASS Study

PAD

Results

- Altogether 128 patients suffered MALE (2.0%). The one-year cumulative incidence of a subsequent hospitalization after MALE was 95.4%, that of total vascular amputations was 22.9%, for death it was 8.7%, and for MACE it was 3.8%
- The MALE index event significantly increased the risk of subsequent hospitalizations (HR: 7.21), subsequent amputations (HR: 197.5) and death (HR: 3.23)
- Following the first incidence of MALE, there was a 6-fold increase in the risk of death, and a 10-fold increase in the risk of the composite MACE or total vascular amputations among patients randomized to aspirin alone compared to those receiving the 'Xarelto' vascular dose 2.5 mg bid in combination with aspirin
- The 'Xarelto' vascular dose 2.5 mg bid in combination with aspirin significantly reduced the incidence of MALE by 43%, total vascular amputations by 58%, peripheral vascular interventions by 24%, and all peripheral vascular outcomes by 24% compared to aspirin alone

	'Xarelto' 2.5 mg bid + aspirin n=2,139	Aspirin alone n=2,123	'Xarelto' 2.5 mg bid + aspirin vs. aspirin alone HR (95% CI)
MALE	1.5%	2.6%	0.57 (0.37–0.88); p=0.01
Total vascular amputation	0.5%	1.2%	0.42 (0.21–0.85); p=0.01
Periph. vasc. intervention	5.5%	7.1%	0.76 (0.60–0.97); p=0.03
All periph. vasc. outcomes	6.2%	8.0%	0.76 (0.61–0.96); p=0.02

Anand et al., Journal of the American College of Cardiology Mar 2018, 24747; DOI:10.1016/j.jacc.2018.03.008

Rivaroxaban Vascular Dose 2.5 mg bid + Aspirin Significantly Reduced **MACE and MALE** Versus Aspirin Alone

Composite outcome	Rivaroxaban 2.5 mg bid + aspirin N=2492	Rivaroxaban 5 mg bid N=2474	Aspirin N=2504	Rivaroxaban 2.5 mg bid + aspirin vs aspirin		Rivaroxaban ng bid + aspirin vs aspirin vs aspirin	
	N (%)	N (%)	N (%)	HR (95% CI)	<i>p</i> - value	HR (95% CI)	<i>p</i> - value
MACE or MALE including major amputation	157 (6)	188 (8)	225 (9)	0.69 (0.56–0.85)	0.0003	0.83 (0.69–1.02)	0.077

28% RRR in MACE with Rivaroxaban Vascular Dose 2.5 mg bid + Aspirin Versus Aspirin Alone

Stroke/MI/cardiovascular death

Rivaroxaban + aspirin	2492	2086	907	127
Rivaroxaban	2474	2044	870	147
Aspirin	2504	2065	930	119

46% RRR in MALE Including Major Amputation with Rivaroxaban Vascular Dose 2.5 mg bid + Aspirin Versus Aspirin Alone

MALE including major amputation

Number at risk				
Rivaroxaban + aspirin	2492	2099	919	129
Rivaroxaban	2474	2071	902	151
Aspirin	2504	2072	951	120

Bleeding Increased but Low with Rivaroxaban Vascular Dose 2.5 mg bid + Aspirin Versus Aspirin Alone, with No Differences Seen in Fatal and Intracranial Bleeding

Outcome	Rivaroxaban 2.5 mg bid + aspirin N=2492	Rivaroxaban 5 mg bid N=2474	Aspirin N=2504	Rivaroxaban 2.5 mg bid + aspirin vs aspirin		Rivaroxaban 5 mg bid vs aspirin	
	N (%)	N (%)	N (%)	HR (95% CI)	<i>p</i> -value	HR (95% CI)	<i>p</i> -value
Major bleeding	77 (3)	79 (3)	48 (2)	1.61 (1.12–2.31)	0.0089	1.68 (1.17–2.40)	0.0043
Fatal	4 (<1)	5 (<1)	3 (<1)	-	-	_	_
Intracranial	5 (<1)	6 (<1)	9 (<1)	0.56 (0.19–1.66)	-	0.68 (0.24–1.91)	-
Fatal or symptomatic bleeding into a critical organ	21 (1)	26 (1)	19 (1)	1.10 (0.59–2.05)	-	1.39 (0.89–3.09)	-

28% Reduction in Risk of the Composite Outcome with Rivaroxaban Vascular Dose 2.5 mg bid + Aspirin Versus Aspirin Alone

Rates at median follow-up of	Rivaroxaban 2.5 mg bid + aspirin N=2492	Rivaroxaban 5 mg bid N=2474	Aspirin N=2504	Rivaroxaban 2.5 mg bid + aspirin vs aspirin		Rivaroxaban 5 mg bid vs aspirin	
21 months	N (%)	N (%)	N (%)	HR (95% CI)	<i>p</i> - value	HR (95% CI)	<i>p</i> - value
Composite net clinical benefit outcome*	169 (7)	207 (8)	234 (9)	0.72 (0.59–0.87)	0.0008	0.89 (0.74–1.07)	0.23

 For every 1000 patients with PAD treated with rivaroxaban plus aspirin, 27 MACE or MALE (including major amputation) events would be prevented, and 1 fatal and 1 critical organ bleed would be caused over a 21-month period

*Defined as CV death, MI, stroke, MALE, major amputation, fatal bleeding or critical organ bleeding

CAD PAD

Rivaroxaban 2.5 mg bid + Aspirin Improved Overall Survival in Patients with CAD or PAD

Cturk / Treatment and	Control	Intervention			
Study / Treatment arm	%/year	%/year	ΠR	HR (95% CI)	<i>p</i> -value
COMPASS ¹					
Rivaroxaban 2.5 mg bid	2.1†	1.8†	0.82		0.01
CHARISMA ²					
Clopidogrel 75 mg od	2.3‡	2.1 [‡]	0.91		0.32
PEGASUS ³					
Ticagrelor 90 mg bid	1.7¶	1.7¶	1.00		0.99
Ticagrelor 60 mg bid	1.7¶	1.6¶	0.89	⊢−◇−−	0.14
TRA2P-TIMI 50⁴					
Vorapaxar 2.5 mg od	1.8¶	1.7¶	0.95		0.41
				0.5 1 Favours intervention	2 Favours control

[†]Estimate calculated from reported overall % across 23 months of mean follow up; *p-value nominally significant because the study was stopped approximately 1 year ahead of schedule due to overwhelming efficacy; threshold for formal significance p=0.0025 [‡]Estimate calculated from reported overall % across 28 months of median follow up; [¶]Estimate calculated from reported 3-year Kaplan-Meier event rates*

1. Eikelboom JW et al. N Engl J Med 2017; DOI: 10.1056/NEJMoa1709118; 2. Bhatt DL et al. J Am Coll Cardiol 2007;49:1982–1988;

3. Bonaca MP et al. N Engl J Med 2015;372:1791-1800; 4. Morrow DA et al. N Engl J Med 2012;366:1404-1413

Recent Advances in the Antithrombotic Management of PAD

Vascular Dose Rivaroxaban Showed Improved Outcomes for PAD Patients with a Need for Increased Vascular Protection

- Rivaroxaban vascular dose 2.5 mg bid plus aspirin reduced the composite endpoint of stroke, MI or CV death by 28%.
 - MALE by 46%
 - Major amputations by 70%
- Despite an expected increase in major bleeding events with rivaroxaban 2.5 mg bid plus aspirin, no significant increase was observed in fatal or critical organ bleeding.
- This dual pathway inhibition of Rivaroxaban vascular dose and aspirin represents a major advance in the management of PAD and is the only available therapeutic option to significantly reduce both MACE and MALE.

Recent Advances in the Antithrombotic Management of PAD

Although patients with PAD are at a high risk of adverse vascular and limbrelated events, they are often under-treated with antithrombotic therapy, which is partly due to the lack of high-quality evidence and consensus recommendations.

- Several unmet needs including the management of patients with asymptomatic PAD, critical limb ischemia, or those undergoing peripheral vascular interventions have yet to be addressed.
- Recent advances, such as the COMPASS study with the 'Xarelto' vascular dose 2.5 mg bid have opened up new perspectives in the antithrombotic management of PAD, and may offer even greater benefits for this high-risk patient population, than previous antithrombotic approaches.
- The ongoing VOYAGER PAD study with 'Xarelto' is expected to provide important information regarding the most effective antithrombotic regimen in patients who have undergone surgical or endovascular revascularization for PAD.

Thank you for your attention.